On the half-Cauchy prior for a global scale parameter

نویسندگان

  • Nicholas G. Polson
  • James G. Scott
چکیده

This paper argues that the half-Cauchy distribution should replace the inverseGamma distribution as a default prior for a top-level scale parameter in Bayesian hierarchical models, at least for cases where a proper prior is necessary. Our arguments involve a blend of Bayesian and frequentist reasoning, and are intended to complement the original case made by Gelman (2006) in support of the folded-t family of priors. First, we generalize the half-Cauchy prior to the wider class of hypergeometric inverted-beta priors. We derive expressions for posterior moments and marginal densities when these priors are used for a top-level normal variance in a Bayesian hierarchical model. We go on to prove a proposition that, together with the results for moments and marginals, allows us to characterize the frequentist risk of the Bayes estimators under all global-shrinkage priors in the class. These theoretical results, in turn, allow us to study the frequentist properties of the half-Cauchy prior versus a wide class of alternatives. The half-Cauchy occupies a sensible “middle ground” within this class: it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space. This provides an alternative, classical justification for the repeated, routine use of this prior. We also consider situations where the underlying mean vector is sparse, where we argue that the usual conjugate choice of an inverse-gamma prior is particularly inappropriate, and can lead to highly distorted posterior inferences. Finally, we briefly summarize some open issues in the specification of default priors for scale terms in hierarchical models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of parameter of proportion in Binomial Distribution Using Adjusted Prior Distribution

Historically, various methods were suggested for the estimation of Bernoulli and Binomial distributions parameter. One of the suggested methods is the Bayesian method, which is based on employing prior distribution. Their sound selection on parameter space play a crucial role in reducing posterior Bayesian estimator error. At times, large scale of the parametric changes on parameter space bring...

متن کامل

Adaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors

Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010